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Abstract The scalar field of classical Kaluza five-dimensional relativity,

identified with the gravitational constant, should be interpreted in cosmo-

logical terms. The Kaluza equations with a Robertson-Walker metric imply

that the gravitational constant is related to the cosmological electromag-

netic energy density. For a homogeneous and isotropic universe, the grav-

itational constant, G, depends only on the Robertson-Walker time coor-

dinate, t, and may scale as strongly as G ∝ t2. The Friedmann equation

reduces to the classical four-dimensional form but the cosmological scale

factor, a(t), for a radiation-dominated universe scales as a ∝ t. The grav-

itational constant is also the coupling constant between gravitational and

electromagnetic fields in this classical unified theory, providing a universal

charge-to-mass ratio and setting the magnitude of the fifth component of a

covariant energy-momentum-charge five-vector.
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1 Introduction

A reconsideration of the implications of classical Kaluza relativity [1] for

the coupling of electrodynamics and gravity is warranted for a couple of

reasons. One is of course that Kaluza relativity provides an elegant and

compelling unification of those classical theories with an economy of as-

sumptions. Another is that despite an intensive effort dating back to the

advent of the quantum revolution, general relativity has defied unification

with quantum theory. A third is that cosmology is in a golden age of discov-

ery thanks to the sophisticated modern observing platforms on earth and

in space. Unprecedented discoveries, such as the acceleration of the Hubble

expansion, are being made which challenge our understanding of cosmology.

Since classical Kaluza theory does make some interesting predictions on the

cosmological scales, it is worth considering these results in the context of

modern cosmological observations.

The essence of classical Kaluza relativity [1] is to posit a five-dimensional

(5D) metric, implying the existence of a fifth dimension besides the four di-

mensions of spacetime (4D). The electromagnetic vector potential provides

the off-diagonal elements of the 5D metric. The new fifth diagonal element of

the metric is a scalar field which is similar to the scalar field of Brans-Dicke

relativity, inviting identification with the gravitational constant.
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Applying such a 5D metric to the 5D Einstein equations yields both the

4D Einstein equations and the 4D vacuum Maxwell equations. Applying

the 5D metric to a 5D geodesic hypothesis yields the usual 4D equation

augmented with the Lorentz force law.

In fact, the Kaluza equation provide many more degrees of freedom than

is necessary to reproduce the 4D field equations and 4D equations of mo-

tion. Therefore Kaluza made a practical assumption, the cylinder condition,

that the 5D metric did not depend on the fifth coordinate. This simplifies

the equations enormously, but there are still additional terms involving the

scalar field that are not present in the standard 4D equations of motion.

Even Brans-Dicke theory, which allows a contribution from the scalar field

to the 4D field equations, assumes that no such contribution could exist in

the 4D equations of motion without violating the equivalence principle.

So Kaluza eliminated the additional terms by assuming that the scalar

field was constant. This was later realized to be problematic when the field

equations are viewed self-consistently. In this paper it is shown that a con-

stant scalar field is indeed a valid approximation on non-cosmological scales,

arising merely from the lengthscale introduced by demanding correpondence

with the 4D Einstein equations. Therefore, constancy of the scalar field nec-

essary to recover the usual equations of motion need not be imposed as an

a priori assumption, but is a natural implication of Kaluza relativity.

Since the scalar field is cosmological in its variation, Kaluza relativity is

considered within the framework of the Robertson-Walker metric, assuming
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that the scalar field depends only on the Robertson-Walker time coordi-

nate. The Kaluza version of the Friedmann equation is obtained and its

implications discussed.

In the following development, the cylinder condition is retained as an a

priori assumption. Starting with [2] and [3], much of the subsequent work

in what came to be known as Kaluza-Klein theory has attempted to ascribe

the cylinder condition to compactification of the fifth dimension down to

unobservable microscopic scales. This concept of compactification has been

a feature of subsequent higher-dimensional Kaluza-type unification theories

which focus on unification of quantum forces. Another approach to the

cylinder condition has made use of projective theories, in which the fifth

dimension appears as a mathematical artifice derived from the usual four

dimensions.

More recent work [4] has revisited the compactified and projective ap-

proaches and compared them to Kaluza’s original approach of treating the

fifth dimension as a classical macroscopic dimension, which Overduin &

Wesson call the non-compactified approach. While the compactified ap-

proach has been standard among workers in higher-dimensional relativity,

[4] find no observational evidence to prefer a compatified or projective in-

terpretation over a non-compactified one. They go on to explore the extra

degrees of freedom arising from relaxation of the cylinder condition. The

same non-compacified approach is taken here. But the justification for the

cylinder condition is purely as the minimal form of the theory which re-
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produces standard 4D theory. The objective is to explore the cosmological

implications of a 5D metric which is constant as function of the fifth dimen-

sion.

This paper enunciates the properties of the fifth component of the proper

velocity and its theoretical context. One finds that that the gravitational

constant provides a cosmic charge-to-mass ratio as well as dimensional char-

acterization of the fifth dimensional coupling between electromagnetic and

gravitational effects. Electric charge is the fifth-dimensional projection of an

energy-momentum-charge five-vector and therefore not strictly conserved,

implying the existence of a rest charge. The standard 4D equations of mo-

tion hold for any cosmological epoch, preserving the equivalence principle.

2 Classical Kaluza Equations

This section collects and summarizes the equations of classical Kaluza the-

ory, with a macroscopic fifth dimension and assuming the cylinder condition,

defined below.

The following notation is adopted. Five-dimensional (5D) tensors are

indicated with a tilde to distinguish them from four-dimensional (4D) ones.

The time coordinate is x0, and the spatial coordinates x1, x2, x3. The fifth

coordinate is x5. Summation is implied on repeated pairs of covariant and

contravariant indices. Roman indices range over all five coordinates, and

greek indices over the usual four coordinates of space and time. Partial

derivatives ∂/∂xa are abbreviated ∂a.
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Classical Kaluza relativity comprises 3 sets of equations: the form of the

5D metric, the 5D Einstein equations for the metric, and the 5D geodesic

hypothesis for the metric. In a space described by the 5D metric g̃ab, parti-

cles of matter move along 5D paths described in terms of a constant b, and

a 5D proper time τ̃ :

g̃abdx
adxb ≡ b2dτ̃2, (1)

which constrains the 5D proper velocity, Ũa ≡ dxa/dτ̃ . The signature of the

fifth dimension in the metric must be spacelike [5], [6]. The entire space xa

is hyperbolic, but the subspace of x1, x2, x3, x5 is Euclidean.

The 4D metric gµν is related to the 4D proper time τ such that gµνdx
µdxν =

c2dτ2, where c is the speed of light. The five-dimensional metric g̃ab is given

in terms of the 4D metric gµν and the electromagnetic vector potential Aµ:

g̃µν = gµν + k2φ2AµAν g̃µν = gµν

g̃5ν = kφ2Aν g̃5µ = −kAµ (2)

g̃55 ≡ φ2 g̃55 =
1

φ2
+ k2A2

where A2
≡ AαA

α = gαβA
αAβ , g̃abg̃

bc = δca, and k is a constant which will

be seen to scale with the gravitational constant. The forms of (1) and (2)

imply a relation between the 4D and 5D proper times:

b2 = c2
(
dτ

dτ̃

)2

+ φ2

(
kAν Ũ

ν + Ũ5

)2

. (3)

The price of unifying gµν and Aµ within the framework of a 5D metric

is the necessary introduction of the scalar field φ. The 5D metric (2) was
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studied in a series of classic papers including [1], [2], and [7]. Closely related

papers included [3], [8], and [9]. [4], [5], [6], and [10] provide reviews. [10]

also provides English translations of [1] and [7]. The Kaluza metric (2)

reproduces the Lorentz force from the 5D equations of motion as well as

the Maxwell equations from the 5D field equations. It is a marvel of Kaluza

relativity that the same metric has the right behavior in the two independent

sets of equations.

The simplest form of Kaluza theory, and the one originally put forth

by Kaluza, assumes ∂g̃ab/∂x
5 = 0, the relation historically known as the

cylinder condition. This condition is assumed a priori here merely as the

minimal version of Kaluza theory necessary to recover standard 4D physics.

The implications of relaxing the cylinder condition are explored in [4].

The 5D field equations are obtained from the 5D Einstein equations,

G̃ab ≡ R̃ab − g̃abR̃/2 = 0, where R̃ab is the 5D Ricci tensor, and R̃ is the

5D scalar curvature. Kaluza originally assumed φ to be constant and it was

not until some twenty five years later that Thiry [7] obtained the full 5D

field equations:

G̃µν = Gµν −
k2φ2

2
TEMµν − T φµν , (4)

∇
µFµν = −3gµαFµν∂α lnφ, (5)

φ−1gαβ∇α∇βφ =
k2φ2

4
FαβF

αβ , (6)



Kaluza Cosmology 9

where ∇α is the 4D covariant derivative, Gµν is the standard 4D Einstein

tensor, Fµν ≡ ∂µAν − ∂νAµ, T
EM
µν is the standard electromagnetic stress

tensor, and T φµν ≡ φ−1[∇µ∇νφ− gµνg
αβ

∇α∇βφ].

Independent of the field equations, the 5D equations of motion obtain

from the 5D geodesic hypothesis:

Ũ b∇̃bŨ
a
≡
dŨa

dτ̃
+ Γ̃ abcŨ

bŨ c = 0, (7)

where ∇̃a is the 5D covariant derivative. Γ̃ abc is the 5D affine connection,

which has the standard relation to the metric:

2Γ̃ abc = g̃ad [∂cg̃bd + ∂bg̃cd − ∂dg̃bc] . (8)

The modified 4D equations of motion are given by the 4D spacetime com-

ponents of equation (7), rewritten in terms of the 4D proper velocity Uν ≡

dxν/dτ :

dUν

dτ
+ Γ̃ ν

55
(U5)2 + 2Γ̃ ν

5µU
5Uµ + Γ̃ ναβU

αUβ +

(
dτ̃

dτ

)2

Uν
d2τ

dτ̃2
= 0. (9)

Equation (9) is the generalized spacetime equation of motion.

3 Cosmological Significance of the Scalar Field

In Kaluza theory the constant k is fixed by correspondence of the 5D vacuum

Einstein equations to the 4D Einstein equations. The spacetime components

of equation (4) include source terms in gµν from both the electromagnetic

field and φ. Correspondence is demanded between equation (4) and the

usual 4D field equations with an electromagnetic source,

Gµν =
8πG

c4
TEMµν , (10)
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so equations (4) and (10) imply

φ2k2 =
16πG

c4
. (11)

Fitting the scalar field into a coherent framework of understanding that

still provides the 4D classical limits has long been a challenge to Kaluza

relativity. In fact, as summarized by [10], the significance of φ in the field

equations was not fully appreciated until some two decades after Kaluza’s

paper. Although Kaluza originally assumed φ constant, it was not realized

until Thiry [7] obtained the full field equations the implied constraint (6) on

the electromagnetic field from assuming constant φ. However, upon closer

inspection, this work finds that the magnitude of k given by equation (11)

implies that setting equation (6) to zero is not a meaningful constraint on

terrestrial electromagnetic fields and that constant φ is a valid assumption

on non-cosmological scales.

The source term for φ on the right hand side of equation (6) is a Lorentz

scalar representing the difference of the energy densities in the electric and

magnetic fields. For electromagnetic fields in which energy is partitioned

equally among electric and magnetic components, this term will vanish.

But consider situations of strong astrophysical electromagnetic fields which

may maximize this term. The field equations (6) for φ and the expression

(11) for k imply a scale of variation for φ given by lφ ∼ (k2φ2ǫEM )−1/2
∼

c2/7(GǫEM )1/2, where ǫEM is electromagnetic energy density. The scale

of variation of φ arising from a neutron-star magnetic field of 1012 Gauss

would be of order 1 astronomical unit. To achive variations in φ on a scale of
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kilometers would require energy densities of order 1038 erg cm−3 or magnetic

field strengths of order 1020 G. For an electromagnetic energy density similar

to the cosmic microwave background value of 0.25 eV cm−3, the magnitude

of k implies φ varies on a lengthscale similar to the radius of the universe.

So φ can be approximated as a constant in the equations of motion

of terrestrial objects, and the constraint (6) from assuming constant φ is

understood to be only on the cosmological electromagnetic energy density.

Kaluza’s original assumption of constant φ is indeed valid in the equations of

motion of terrestrial objects and provides no constraint on non-cosmological

electromagnetic fields.

The 4D Einstein equations (4) with the extra source term arising from

φ, along with the field equation (6) for φ, are quite similar to the standard

Brans-Dicke theory which augments general relativity with a scalar field.

As suggested by [8] and [9], and implied by (11), φ may be interpreted in

terms of the gravitational constant G. Specifically,

k2
≡

16πG0

c4
φ2 = G/G0, (12)

where G0 is a normalizing constant.

If φ, and thereforeG, is truly a cosmological field, let us consider the field

equations (4) and (6) when gµν is the standard Robertson-Walker metric,

describing a homogeneous and isotropic universe. Further limit considera-

tion to that of a flat universe, consistent with current observations. The

non-zero components of gµν are:

gtt = c2 grr = −a2 gθθ = −a2r2 gψψ = −a2r2 sin2 θ
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where r, θ, and ψ are comoving spherical coordinates, t is the cosmological

proper time, and a(t) is the expansion scale factor. Demand φ is homoge-

neous and isotropic so that φ = φ(t) only.

Then the G̃tt component of equation (4) reproduces the Friedmann equa-

tion for a flat universe, but with a varying gravitational constant:

(
ȧ

a

)2

=
8πG0

3c2
φ2ǫEM , (13)

where TEMtt ≡ ǫEM . Under these assumptions for g̃ab, T
φ
tt = 0 and makes

no contribution to the Friedmann equation.

The corresponding equation for φ(t) is provided by (6):

φ̈

φ3
=

4πG0

c2
F 2 (14)

where F 2
≡ FαβF

αβ is also a function of t.

Since we have not considered matter, these equations only apply to the

early radiation-dominated universe. The dominant electromagnetic factor

in these equations arises from the cosmic microwave background (CMB),

and its energy density ǫCMB ∝ a−4. For an isotropic radiation field like

the CMB, energy is expected to be partitioned equally among magnetic

and electric field oscillations so that F 2

CMB = 0. In this case, φ ∝ t and

the gravitational constant can vary as strongly as G(t) ∝ t2. The modi-

fied Friedmann equation (13) then implies a(t) ∝ t, whereas the standard

Friedmann result for a radiation dominated universe is a(t) ∝ t1/2.

Equation (6) therefore implies the gravitational constant G is a func-

tion of the cosmological electromagnetic field, and G0 refers to its value
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in the present epoch of cosmological electromagnetic energy density. The

scale of variation lφ ∝ t−1, implying that G was constant for each previous

cosmological epoch.

While mathematically similar to Brans-Dicke theory, classical Kaluza

relativity contains significant differences. One is that Brans & Dicke antic-

ipated the scalar field would find its origin in a cosmological matter field,

whereas the Kaluza theory finds the origin of φ in the cosmological electro-

magnetic field. Another qualitative difference is that Brans & Dicke assumed

the scalar field confined its effects to the field equations and did not enter

in the equations of motion, in order to preserve the principle of the equiv-

alence of gravitation and inertia. The Kaluza equations of motion (9) must

in general admit dependencies on φ, so section 5 will address this issue.

4 G AND THE NATURE OF ELECTRIC CHARGE

This section summarizes the cosmological implications of Kaluza relativity

for electric charge. In the 4D equations of motion (9), the term linear in Uµ

must correspond to the Lorentz force. Under the approximation of constant

(cosmological) φ, we indeed find from (2) and (8) that

2Γ̃ ν
5µ = kφ2gναFµα. (15)

Equation (9) therefore implies that in order to recover the standard

expression for the Lorentz force, electric charge q must be identified with

U5 such that

U5 =
q

kφ2m0c
= c

q/m0

4(πG0)1/2

(
G0

G

)
, (16)
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where m0 is rest mass of the object in 4D motion and kφ2 is given by (12).

The gravitational constant takes on new significance in light of (16). The

Gaussian units of electric charge are m1/2l3/2t−1, where m denotes a mass

unit, l a length unit, and t a time unit. The units of G are l3m−1t−2, so the

gravitational constant provides a universal charge-to-mass ratio.

Whereas relativity tells us that mass/energy arises from “motion” in

time and momentum arises from motion in space, Kaluza relativity tells us

that electric charge arises from “motion” along the 5th coordinate. Just as

particle energy ∝ U0 and spatial momentum ∝ U are frame-dependent, so

is electric charge ∝ U5. Thus an interesting physical picture emerges for

the concept of electric charge. The electrical charge of an object at rest in

the laboratory arises from its motion in the fifth dimension. Furthermore,

because its charge is only one component of an energy-charge-momentum

5-vector, electric charge is not a Lorentz scalar. Let us examine this issue

more closely.

The cylinder condition allows recourse to a simple equation of motion for

U5. The equations of motion (7) can be written in a simple and completely

general form for the covariant 5-velocity Ũa = g̃abŨ
b. Because the metric

commutes with the covariant derivative ∇̃a, (7) and the antisymmetry in

(8) imply:

dŨa
dτ̃

=
1

2
Ũ bŨ c

∂g̃bc
∂xa

. (17)

This form of the equations of motion is in terms of a normal partial deriva-

tive instead of a covariant derivative, and expresses the conservation prop-
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erties of the metric. There is a conserved quantity associated with each

invariant coordinate.

The cylinder approximation therefore implies a conserved quantity along

5D worldlines:

Ũ5 = φkAν Ũ
ν + φŨ5 =

(
dτ

dτ̃

)
φ(kAνU

ν + U5) = constant. (18)

This expression for Ũ5 can be combined with (3) to show that dτ/dτ̃ is

constant under the approximation of the cylinder condition. The constancy

of dτ/dτ̃ in turn implies that electric charge, identified with U5, is not

conserved. Instead, U5 can be altered by 4D motion in an electromagnetic

field as shown in (18).

Equation (18) can be rewritten in conventional terms:

16πG0

c3
m0AνU

ν + q = constant. (19)

Electric charge is a frame-dependent quantity, and its variation with mo-

tion in electromagnetic fields is given by (19). For a relativistic proton with

proper velocity ∼ 100c, moving in a 106 Gauss magnetic field characterized

by a lengthscale of 10 meters, the variation in charge is ∼ 10−38. There-

fore, while Kaluza relativity predicts electric charge is not a true Lorentz

scalar, its variation with 4D motion is indistinguishable under laboratory

conditions from a Lorentz scalar.
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5 Terrestrial Equations of Motion

We are now in a position to consider the other terms in the 4D equations of

motion (9) and address their implications for the equivalence principle. In

the preceding section, the term linear in Uµ was identified with the Lorentz

term as long as U5 was identified with electric charge. The values of U5

for elementary particles turn out to be astronomical: 1018c for protons, and

1021c for electrons.

This creates an apparent problem in the equations of motion (9), one

which was recognized by Kaluza. It is that the magnitude of U5 for elemen-

tary charged particles would cause the term quadratic in U5 to dominate

the Lorentz and Einstein force terms linear and quadratic, respectively, in

Uµ. However, under the assumption of constant φ, again implying epochal

constancy of the cosmological electromagnetic energy density and of the

gravitational constant G, the term in (9) quadratic in U5 vanishes because

Γ̃ ν
55

= 0.

Under the approximation of constant φ for non-cosmological scales, the

coefficient of the term quadratic in Uµ is given by:

Γ̃µαβ = Γµαβ +
k2φ2

2
gµν (AαFβν +AβFαν) . (20)

The first term on the right hand side of (20) is just the standard 4D affine

connection. The second term in Aµ is the contribution of electromagnetic

stresses to spacetime curvature and is of order k2A2.
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The units of vector potential A are m1/2l1/2t−1. Therefore k2A2
∼

GA2/c4 is the dimensionless number that expresses the strength of the

coupling corrections to the 4-D theory. k2A2 is a very small number, and

quantifies weak couplings to electromagnetic fields. For a neutron star mag-

netic field of strength 1012 G and lengthscale 10 km, k2A2 is of order 10−13.

For galactic electromagnetic field energy densities of 1 eV cm−3 and length

scale 1 parsec, k2A2 is of order 10−32.

The final term in (9) was shown to be zero in the previous section, im-

plied by equations (18) and (3). With this, the 4D equations of motion (9)

reduce to the standard forms when the scalar field is understood to depend

only on the cosmological proper time. No terrestrial or astrophysical elec-

tromagnetic field can produce an observable deviation in the scalar field.

Therefore the principle of the equivalence of gravitation and inertia is pre-

served by the Kaluza equations of motion on non-cosmological scales. As

in standard Brans-Dicke theory, the scalar field appears only in the field

equations and not in the equations of motion.

6 Conclusions

The elegant and compelling unification of electrodynamics and general rela-

tivity provided by classical Kaluza 5D relativity provides many more degrees

of freedom than are necessary to recover standard 4D theory. Historically,

the equations were simplified by assuming that the 5D metric does not de-

pend on the fifth coordinate (the cylinder condition) and that the scalar



18 L. L. Williams

field is constant. The latter condition was later seen to impose an unmoti-

vated constraint on the electromagnetic field. While the cylinder condition

is retained here as a simplifying assumption, the constancy of the scalar field

actually follows from the lengthscales associated with identifying the scalar

field with the gravitational constant. Specifically, the scalar field has no

variation except perhaps on cosmological scales, and its constancy therefore

imposes no constraint on any terrestrial or astrophysical electromagnetic

fields.

A treatment of the 5D theory with a Robertson-Walker metric for the 4D

sub space implies that, for a radiation-dominated universe, the Robertson-

Walker scale factor is proportional to the Robertson-Walker time coordi-

nate, t, and that the gravitational constant scales as t2. Otherwise, the

gravitational constant is truly constant for each cosmological epoch and

provides the coupling constant between gravitational and electromagnetic

fields. It also provides a universal charge-to-mass ratio and sets the mag-

nitude of the fifth component of a covariant 5D energy-momentum-charge

five-vector.
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