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ABSTRACT

Classical, non-compactified five-dimensional Kaluza theory is revisited. It is shown that the
standard field equations imply that the scalar field characteristic of this theory varies only
on cosmological scales. The constancy of the scalar field is therefore a valid approximation
for the equations of motion on terrestrial scales. Previous work has suggested the scalar
field can be identified with the gravitational constant. If so, then the gravitational constant
is seen to be a function of the cosmological electromagnetic energy density.

Within the non-compactified framework, the cylinder condition of Kaluza theory is viewed
as an approximation to the dependence of the fields on the fifth coordinate. The impli-
cations obtained in previous work of the cylinder condition are summarized: that electric
charge arises from motion along the fifth coordinate, and that the gravitational constant
provides a cosmic charge-to-mass ratio.

For motion on terrestrial scales, and under the approximation of the cylinder condition,
the Kaluza theory is shown to admit isochronal geodesics, describing motion through space
at constant time, for charged particles moving in magnetic fields.

I. INTRODUCTION

The five-dimensional Kaluza theory [6] provides an elegant unification of general relativity
and classical electrodynamics. The four-dimensional Einstein equations with electromag-
netic source terms, and the vacuum Maxwell equations, are both obtained from a set of
five-dimensional vacuum Einstein equations. Likewise, the Lorentz force law obtains from
a five-dimensional geodesic hypothesis. This unification comes at the cost of the ad hoc
assumption known as the cylinder condition: that no fields depend on the fifth coordinate.

Starting with Klein [7,8], much of the subsequent work in what has come to be known as
Kaluza-Klein theory has attempted to ascribe the cylinder condition to compactification
of the fifth dimension down to unobservable microscopic scales. This concept of com-
pactification has been a feature of subsequent higher-dimensional Kaluza-type unification
theories. Another approach to the cylinder condition has made use of projective theories,
in which the fifth dimension appears as a mathematical artifice derived from the usual four
dimensions.
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In more recent work, Overduin & Wesson [10] have revisited the compactified and pro-
jective approaches and compared them to Kaluza’s original approach of taking the fifth
dimension at face value, which Overduin & Wesson call the non-compactified approach.
The cylindricity is relaxed in principle, to be interpreted merely as an approximation.
While the compactified approach has been standard among workers in higher-dimensional
relativity, Overduin & Wesson find no observational evidence to prefer a compatified or
projective interpretation over a non-compactified one.

This paper considers five-dimensional Kaluza theory from a non-compactified viewpoint:
that the fifth dimension is macroscopic, and the apparent independence of the fields from
the fifth coordinate is only an approximation. While the underlying reason for this ap-
proximation remains undescribed, proceeding with a consideration of the properties of a
macroscopic fifth dimension yields some results of interest.

Specifically, this paper focuses on implications of a macroscopic fifth dimension for the
equations of motion. While [2] does make mention of how the fifth component of proper
velocity of a particle reflects its charge-to-mass ratio, very little of the Kaluza literature
before [10] focuses on the equations of motion. Therefore this paper begins with an enun-
ciation of the properties of the fifth component of the proper velocity, and of its theoretical
context. One finds that that the gravitational constant provides a cosmic charge-to-mass
ratio, and provides a conversion constant between units of length and units characterizing
the fifth dimension. Electric charge is seen to be only the fifth-dimensional projection of
an energy-momentum-charge five-vector and therefore not strictly conserved, implying the
existence of a rest charge. The units of the fifth dimension are characterized.

The scalar field inherent in the five-dimensional theory is revisited, and it is shown how its
scale of variation decouples from the terrestrial variational scales of the other fields. Making
the Brans-Dicke identification of the scalar field with the gravitational constant, one is lead
to the result that the gravitational constant depends on the cosmological electromagnetic
energy density.

Working within the cylinder approximation, and ignoring variation of the scalar field on
terrerstrial scales, isochronal geodesics, which describe motion in three-space at constant
time, obtain from motion of charged particles in magnetic fields. These equations of motion
through space at constant time are described.

II. GEODESIC HYPOTHESIS IN FIVE DIMENSIONS

The following notation is adopted. Five-dimensional (5D) tensors are indicated with a
tilde to distinguish them from four-dimensional (4D) ones. The time coordinate is x0, and
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the spatial coordinates x1, x2, x3. The fifth coordinate is x5. Summation is implied on
repeated pairs of covariant and contravariant indices. Roman indices range over all five
coordinates, and greek indices over the usual four coordinates of space and time. Partial
derivatives ∂/∂xa are abbreviated ∂a.

In a space described by the 5D metric g̃ab, particles of matter move along 5D paths de-
scribed in terms of a constant b, and a 5D proper time τ̃ :

g̃abdxadxb ≡ b2dτ̃2, (1)

which constrains the 5D length of the 5D proper velocity, Ũa ≡ dxa/dτ̃ . Previous results
[2,3] show that the signature of the fifth dimension in the metric must be spacelike. The
entire space xa is hyperbolic, but the subspace of x1, x2, x3, x5 is Euclidean.

The 5D equations of motion obtain from the 5D geodesic hypothesis:

Ũ b∇̃bŨ
a ≡ dŨa

dτ̃
+ Γ̃a

bcŨ
bŨ c = 0, (2)

where ∇̃a is the 5D covariant derivative. Γ̃a
bc is the 5D affine connection, which has the

standard relation to the metric:

2Γ̃a
bc = g̃ad [∂cg̃bd + ∂bg̃cd − ∂dg̃bc] . (3)

The modified 4D equations of motion are given by the 4D spacetime components of (2):

dŨν

dτ̃
+ Γ̃ν

55(Ũ
5)2 + 2Γ̃ν

5µŨ5Ũµ + Γ̃ν
αβŨαŨβ = 0. (4)

Expressed in terms of the 4D proper time τ defined by gµνdxµdxν = c2dτ2, where gµν is
the 4D metric and c is the speed of light, (4) can be rewritten in terms of the 4D proper
velocity Uν ≡ dxν/dτ :

dUν

dτ
+ Γ̃ν

55(U
5)2 + 2Γ̃ν

5µU5Uµ + Γ̃ν
αβUαUβ +

(
dτ̃

dτ

)2

Uν d2τ

dτ̃2
= 0. (5)

Equation (5) is the generalized spacetime equation of motion.

III. THE KALUZA METRIC AND THE INTERPRETATION OF CHARGE

The Kaluza metric g̃ab is completely determined by demanding Γ̃ν
5µ take a form such that

the term in (5) linear in Uν corresponds to the Lorentz force vector (in Gaussian units),

2Γ̃ν
5µU5Uµ =⇒ q

m0c
FαβUβgαν , (6)
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where Fαβ ≡ ∂αAβ −∂βAα, Aα is the electromagnetic four-vector potential, m0 is particle
rest mass, and q is particle charge. There are in general other terms besides the Lorentz
term which may arise from Γ̃ν

5µ, but correspondence with 4D physics requires the Lorentz
term to be among them.

The five-dimensional metric g̃ab is therefore given in terms of gµν and Aµ:

g̃µν = gµν + k2φAµAν g̃µν = gµν

g̃5ν = kφAν g̃5µ = −kAµ (7)

g̃55 ≡ φ g̃55 = 1 + k2A2

where A2 ≡ AαAα = gαβAαAβ , g̃abg̃
bc = δc

a, and k is a constant. The price of unifying gµν

and Aµ within the framework of a 5D metric is the necessary introduction of the scalar
field φ.

The 5D metric (7) was studied in a series of classic papers including Kaluza [6], Klein [7],
and Thiry [9]. Closely related papers included those by Klein [8], Jordan [5], and Brans
& Dicke [4]. Overduin & Wesson [10], Bergmann [3], and Bargmann [2] provide reviews.
Applequist, Chodos, and Freund [1] provide translations of [6] and [7] and some historical
review.

In addition to assuming the form of g̃ab to recover the Lorentz force, it is also necessary to
identify the proper velocity along the fifth coordinate with electric charge:

U5 ≡ dx5

dτ
=

q/m0c

k
. (8)

The 5D metric (7) is rich enough in structure that general relativity and electrodynamics,
along with significant coupling terms, can be recovered in the absence of any variation of g̃ab

with x5. The simplest form of Kaluza theory, and the one originally put forth by Kaluza,
therefore assumes ∂g̃ab/∂x5 = 0, the relation historically known as the cylinder condition.
In the non-compactified approach, this condition is considered only an approximation,
and the fields may in general have some dependence, albeit weak, on the fifth coordinate.
The subsequent development here makes the approximation of cylindricity in deriving the
equations of motion. Overduin & Wesson explore the implications of relaxing the cylinder
condition.

IV. THE FIELD EQUATIONS CONSTRAIN k AND φ
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A standard result of Kaluza theory is that the constant k is fixed by correspondence of the
5D vacuum Einstein equations to the 4D Einstein equations.

The 5D Einstein equations,

G̃ab ≡ R̃ab −
1
2
g̃abR̃ = 0, (9)

where R̃ab is the 5D Ricci tensor, and R̃ is the 5D scalar curvature, are decomposed within
the cylinder approximation into the familiar 4D components [9]:

G̃µν = Gµν −
k2φ

2
TEM

µν − Tµν(φ), (10)

∇µFµν = −3φ−1/2gµα ∂φ1/2

∂xα
Fµν , (11)

gαβ∇α∇βφ1/2 =
k2φ3/2

4
FαβFαβ , (12)

where ∇α is the covariant 4D derivative, TEM
µν is the electromagnetic stress tensor, and

Tµν(φ) is a function of φ.

The spacetime components of (10) include source terms in gµν from both the electromag-
netic field and φ. Furthermore, k is determined by demanding correspondence between
(10) and the 4D field equations with an electromagnetic source:

Gµν =
8πG

c4
TEM

µν , (13)

so (10) and (13) imply

φk2 =
16πG

c4
. (14)

G is the gravitational constant, and its units are l3m−1t−2, while those of the vector
potential A are m1/2l1/2t−1, where m denotes a mass unit, l a length unit, and t a time
unit. Therefore k2A2 ∼ GA2/c4 is the dimensionless number that expresses the strength
of the coupling corrections to the 4-D theory.

k2 is a very small number, and quantifies weak couplings to electromagnetic fields. For a
neutron star magnetic field of strength 1012 G and lengthscale 10 km, GA2/c4 is of order
10−13. For galactic electromagnetic field energy densities of 1 eV cm−3 and length scale
1 parsec, GA2/c4 is of order 10−32. The metric terms linear in kA are strong enough to
produce the Lorentz force because U5 is inversely proportional to k.
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The scalar field must be assimilated into a coherent framework of understanding that
still provides the 4D classical limits. In fact, as summarized by Applequist et al.[1], the
significance of φ in the field equations was not fully appreciated until some two decades
after Kaluza’s paper. Although Kaluza originally assumed φ constant, it was not realized
until much later the implied constraint (12) on the electromagnetic field. However, the
magnitude of k implies constant φ is a valid assumption on terrestrial scales.

The field equations for φ (12) and the expression for k (14) imply a scale of variation
for φ given by lφ ∼ (k2eEM )−1/2 ∼ c2/(GeEM )1/2, where eEM is electromagnetic energy
density. For an electromagnetic energy density similar to the observed average galactic
value of 1 eV cm−3, the magnitude of k implies φ varies on a lengthscale similar to the
radius of the universe. The scale of variation of φ arising from a neutron-star magnetic
field of 1012 Gauss would be of order 1 astrononmical unit. To achive variations in φ on a
scale of kilometers would require energy densities of order 1040 erg cm−3 or magnetic field
strengths of order 1020 G.

Variation of φ is therefore of interest only on cosmological scales, and not of interest for
the equations of motion of terrestrial objects. So φ can be approximated as a constant
in the equations of motion of terrestrial objects, and the constraint (12) from assuming
constant φ is understood to be only on the cosmological electromagnetic energy density.

As suggested by Bran & Dicke [4] and Jordan [5], and implied by (14), φ may be interpreted
as the gravitational constant G. In this case, (12) implies the gravitational constant is a
function of the cosmological electromagnetic energy density.

The constancy of φ on terrestrial scales, and the cylinder approximation, makes the relation
(6) between the 5D connection Γ̃ν

5µ in (5) and the Lorentz force exact. The approximation
of constant φ, as for the cylinder approximation, greatly simplifies the 5D connections,
and therefore the equations of motion. Even in this simplest of mathematical limits, there
emerge non-trivial electromagnetic corrections to the equations of motion.

V. G AND THE NATURE OF x5

Equations (8) and (14) imply the x5 component of the proper velocity is

U5 = c
q/m0

4(πG)1/2
. (15)

The origin of electric charge finds its explanation in this theory as arising from “motion”
along the 5th coordinate. Just as particle energy ∝ U0 and spatial momentum ∝ U are
frame-dependent, so is electric charge.
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Just as the time coordinate ∆x0 ≡ c∆t is normalized to units of length with the constant
c, so may x5 be decomposed into a ‘natural’ coordinate h and a constant α: ∆x5 ≡ α∆h.

Now the question arises as to which of the physical quantities on the right hand side of
(15) is associated with motion along the fifth coordinate. Even as G and c are understood
to be constants independent of particle motion, (15) still does not provide a clear basis for
distinguishing only electric charge as originating from motion along the fifth coordinate.
It is the ratio of charge to rest mass which enters (15).

However, the assumption is taken here that rest mass is a parameter independent of electric
charge, and it is electric charge only which is identified with the natural coordinate h:
q ≡ dh/dτ . The rest mass is pulled into the normalizing constant α such that α ≡
c/(16πGm2

0)
1/2. In this case, the natural coordinate h is seen to have units of charge·time.

The gravitational constant takes on new significance in light of (15). The Gaussian units
of electric charge are m1/2l3/2t−1, so G1/2 provides a universal charge-to-mass ratio. The
values of U5 for elementary particles are astronomical: 1018c for protons, and 1021c for
electrons.

This immediately creates an apparent problem in the equations of motion (5) because the
term quadratic in U5 would dominate the Lorentz and Einstein force terms. This apparent
problem was noticed originally by Kaluza [6]. However, under the assumption of constant
φ, and the implied constancy of the cosmological electromagnetic energy density, the term
in (5) quadratic in U5 vanishes.

VI. CYLINDER CONDITION AND VARIATION OF CHARGE

The approximation of the cylinder condition allows recourse to a simple equation of motion
for Ũ5. The equations of motion (2) can be written in a simple and completely general form
for the covariant component of the 5-velocity Ũa = g̃abŨ

b. Because the metric commutes
with the covariant derivative ∇̃a, (2) and the antisymmetry in (3) imply:

dŨa

dτ̃
=

1
2
Ũ bŨ c ∂g̃bc

∂xa
. (16)

This form of the equations of motion is in terms of a normal partial derivative instead of
a covariant derivative, and expresses the conservation properties of the metric. There is a
conserved quantity associated with each invariant coordinate.

The cylinder approximation therefore implies a conserved quantity along 5D worldlines:

Ũ5 = φkAνŨν + φŨ5 =
(

dτ

dτ̃

)
φ(kAνUν + U5) = constant. (17)
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Equations (17), (1), and (7) imply a simple relation between the 5D and 4D proper times:(
dτ

dτ̃

)2

= b2(c2 + Ũ2
5 /φ)−1 =⇒ constant. (18)

The constancy of φ on terrestrial scales implies the constancy of (18), and eliminates the
final term in (5). dτ/dτ̃ differs from 1 only for charged particles, or uncharged particles in
electromagnetic fields: verify this.

Note that it is U5 which is identified with electric charge in the equations of motion
(5), while (17) shows that U5 alone is not conserved. Charge is affected by motion in
electromagnetic fields. With φ = −1, equation (17) can be rewritten in conventional
terms:

16πG

c3
m0AνUν − q = constant. (19)

Electric charge is a frame-dependent quantity, and its variation with motion in electromag-
netic fields is given by (19). For a relativistic proton with proper velocity ∼ 100c, moving
in a 106 Gauss magnetic field characterized by a lengthscale of 10 meters, the variation
in charge is ∼ 10−30. Therefore, for elementary charged particles, the rest charge q0 and
its variation with motion q are approximately equal and constant, and cancel out of the
energy-momentum-charge relations (16), preserving the standard 4D energy-momentum
relations.

IX. MOTION AT CONSTANT TIME

The charge of particles at rest in the laboratory is interpreted within the 5D theory as
motion along the 5th coordinate at constant spatial position. We would like to investigate
whether x5 can serve as the independent variable for spatial derivatives in the absence of
variation in time. That is, we seek geodesics in the space of x1, x2, x3, x5 that lie on slices
of constant time.

The constant b can be obtained from the 5D Minkowski limit, when g̃ab is diagonal and
constant. The 5D equivalence principle demands that we be able to tranform to a coor-
dinate system characterized by the 5D Minkowski metric, where φ, as shown in previous
work, must share the sign of the spatial dimensions. In the absence of electromagnetic or
gravitational fields, and in the absence of spatial motion

g̃abŨ
aŨ b = g̃abU

aU b

(
dτ

dτ̃

)2

= b2 = c2

[
1− (q/m0)2

16πG

](
dτ

dτ̃

)2

. (20)
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Consider a charged particle at rest. Its 5D proper velocity Ũa = (dx0/dτ̃ , dx5/dτ̃), and
Ũ2 = b2 is given by (20). Consider now motion in (x, x5) for dx0 = 0, where x is the
spatial position vector. Then

Ũa =
(

0,
dx
dτ̃

,
dx5

dτ̃

)
=

dτ

dτ̃

(
0,

dx
dτ

,
dx5

dτ

)
=

dh

dτ

dτ

dτ̃

(
dx
dh

, α

)
, (21)

and

Ũ2 = −
(

dτ

dτ

)2 (
dh

dτ̃

)2
[(

dx
dh

)2

+ α2

]
≡ −q2

5

[
v2
5 + α2

](
dτ

dτ̃

)2

. (22)

Now demand that the charged particle at rest somehow changes its motion to that described
by (21). Then Ũ2 as described by (20) must equate to that described by (22), thereby
determining q5 on geodesics of dx0 = 0:

q2
5 =

q2
0α2 − c2

v2
5 + α2

(23)

The cylinder condition (17) implies

Ũ5 = −q5 [kA · v5 + 1] = constant (24)

which, with (23), describes the motion through space at constant time for particles of rest
mass m0 and electric rest charge q0. These geodesics at constant time apparently depend
on an applied vector potential A, with associated magnetic field B = ∇×A.

X. CONCLUSIONS

While early treatments of Kaluza theory ignored variation of the scalar field, and thereby
imposed an artificial constraint on the electromagnetic energy density, it turns out that
the field equations imply that the scalar field varies only on cosmological scales. Therefore
constancy of the scalar field is a valid approximation for motion on terrestrial scales. If the
scalar field is identified with the gravitational constant, it implies that the gravitational
constant is a function of the cosmological electromagnetic energy density.

For motion on terrestrial scales, and under the approximation of the cylinder condition,
non-compactified Kaluza theory admits isochronal geodesics for the motion of charged
particles in magnetic fields.
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