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ABSTRACT

Classical 5D Kaluza theory predicts

• an electrodynamic antigravity which does not couple to charge

• the gravitational constant is a charge-to-mass ratio. It is also the coupling constant between

gravity and EM

• G is analagous to c in that both provide dimensional conversion to length units

• G/c4 appears to be the Brans Dicke scalar

• equations in principle allow motion at constant time

• the equations are applicable over a broad range of lengthscales, and variations in the scalar

field are not terrestrial
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1. Review of 4D Equations of Motion

A cornerstone of relativity is the geodesic hypothesis: that there exists a 4D spacetime co-

ordinate system ξµ in which the equation of motion for a particle moving in a gravitational

field describes a straight line:
d2ξµ

dτ2
= 0 (1)

c2dτ2 = ηαβdξ
αdξβ (2)

In other words, the flat Minkowskian metric of special relativity is locally and instanta-

neously, accurate everywhere. One may then choose to find ξµ in lab coordinates xµ:

dξµ

dτ
=
∂ξµ

∂xα
dxα

dτ

And,
∂xδ

∂ξα
d2ξα

dτ2
=
d2xδ

dτ2
+
∂xδ

∂ξα
∂2ξα

∂xβ∂xγ
dxβ

dτ

dxγ

dτ

The equation of motion of gravitational free fall is then:

d2xδ

dτ2
+ Γδβγ

dxβ

dτ

dxγ

dτ
≡ Uα∇αU δ = 0 (3)

where

Γαβγ ≡
∂xα

∂ξσ
∂2ξσ

∂xβ∂xγ
=

1

2
gαδ

{
∂gβδ
∂xγ

+
∂gγδ
∂xβ

− ∂gβγ
∂xδ

}
(4)

and we have defined the 4D covariant derivative ∇µ.

The generalized metric gαβ is related to the coordinate transformation of the line element:

c2d2τ ≡ ηαβdξαdξβ = ηγδ
∂ξγ

∂xα
∂ξδ

∂xβ
dxαdxβ ≡ gαβdxαdxβ

so that

gαβ
dx

dτ

α dx

dτ

β

= c2 (5)

which complements (3) to describe the motion of a particle moving freely under the force

of gravity.

In the presence of electromagnetic forces, the relativistic equations of motion take the form

dU δ

dτ
+ ΓδβγU

βUγ =
q

mc
FαγU

γgαδ (6)
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for objects of rest mass m, charge q, and 4-velocity Uµ, where

Uµ ≡ dxµ

dτ
=
dt

dτ

dxµ

dt
≡ γ(c,v) (7)

Equations (5) and (7) imply the 4-velocity has invariant length and allows one to solve for

γ under the assumption that γ(v = 0) = 1.

γ2(c2 − v2) = c2

2. 5D Equations of Motion

Now apply Kaluza’s hypothesis to the geodesic equation. Can we recover the electromag-

netic equations of motion by extending the geodesic hypothesis to five dimensions? It

turns out the answer is yes. Also, considering the equations of motion determines the

extra-dimensional extensions to the 4-D metric. A free constant is fixed by identifying a

component of the 5-D Einstein equations with the Maxwell equations. All in all, makes

for quite a tidy bundle of physics.

In the following, greek indices are reserved for the 4 spacetime dimensions. Roman indices

range over all 5 dimensions. 5-D quantities will be indicated with a tilde, e.g., g̃µν 6= gµν .

The time dimension is denoted 0, spatial is 1,2,3, and 5 for the 5th dimension.

Extending relativity to 5D demands an assumption about the 5D Minkowski metric, η̃ab.

Assume the 5D extensions to the flat spacetime metric:

η̃00 = +1; η̃11 = η̃22 = η̃33 = −1; η̃55 = eiθ

where an arbitrary complex metric coefficient of unit modulus is allowed in the fifth diag-

onal element.

Assuming an invariant interval b2dτ̃2, the 5-D analog of the geodesic hypothesis, (1) and

(2):
d2ξa

dτ̃2
= 0 (8)

b2dτ̃2 = η̃abdξ
adξb (9)

lead by the same mathematics to the 5-D equations of motion:

dŨa

dτ̃
+ Γ̃abcŨ

bŨ c = 0 ≡ Ũ b∇̃bŨa (9)
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g̃ab
dx

dτ̃

a dx

dτ̃

b

= b2 (10)

where the constant in (10) is calculated below. Assume that 4 of the 5 dimensions are the

regular spacetime dimensions of relativity: xa = (xµ, x5) = (ct,x, sh), where the constant

s converts the 5th dimension units to length units, just as c does for time: x0 = ct and

x5 = sh. Tildes also differentiate 4D and 5D derivatives such as Ũν 6= Uν . The 5D

connections are as given in (4) with summation over 5 indices.

Now define the 5-velocity vector:

Ũa ≡ dxa

dτ̃
= (Ũµ, Ũ5) =

(
dt

dτ̃

)(
dxµ

dt
,
dx5

dt

)
≡ γ̃

(
c,v, sḣ

)
=
dτ

dτ̃

(
Uµ, U5

)
(11)

Then the equations of motion through the 5 dimensions, factored for identification with

4D theory, are:

dŨν

dτ̃
+ Γ̃ν55(Ũ5)2 + 2Γ̃ν5µŨ

5Ũµ + Γ̃ναβŨ
αŨβ = 0

=

(
dτ

dτ̃

)2(
dUν

dτ
+ Γ̃ν55(U5)2 + 2Γ̃ν5µU

5Uµ + Γ̃ναβU
αUβ

)
+ Uν

d2τ

dτ̃2

(12)

dŨ5

dτ̃
+ Γ̃5

55(Ũ5)2 + 2Γ̃5
5µŨ

5Ũµ + Γ̃5
αβŨ

αŨβ = 0 (13)

3. U5, g̃ab from 4D Lorentz limit

The 5D geodesic equations (12) involve a term linear in the four-velocity that invites

identification with the electromagnetic term in (6). To make this correspondence would

require

2Γ̃ν5µU
5 = − q

mc
Fαµg

αν (14)

where

Fαβ ≡ ∂αAβ − ∂βAα (15)

(14) expands to:

U5
[
g̃αν(∂µg̃5α − ∂αg̃5µ) + g̃να∂5g̃µα + g̃ν5∂µg̃55

]
=

q

mc
gαν (∂µAα − ∂αAµ) (16)

Relaxing the equalities (14) and (16) for the moment, we would at least recover (6) among

other terms if

g̃αν = gαν (17)
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g̃5α = kAα (18)

U5 =
dx5

dτ
=

q

kmc
(19)

where k is a constant that will ultimately be determined by the Einstein-Maxwell equations.

The coefficient in (17) must be unity to preserve the limit g̃µν =⇒ gµν when A = 0.

In terms of g̃55 ≡ φ, (17) and (18) are sufficient to specify g̃ab and its inverse:

g̃µν = gµν + k2AµAν/φ

g̃5ν = kAν

g̃55 ≡ φ
g̃µν = gµν

g̃5µ = −kAµ/φ

g̃55 =
1

φ
+
k2A2

φ2

(20)

where A2 ≡ AαA
α = gαβA

αAβ . Now, g̃abg̃
bc = δca. gµν is the object used to raise and

lower indices on 4-D objects. However, it is g̃ab which raises and lowers indices on 5-D

objects. This is the classic metric of Kaluza (1921), Klein (1926), Bargmann (1957), Thiry

(1948), and Wesson (1999).

4. Transformation properties of g̃ab

The metric (20) has suitable transformation properties, expressed in terms of coordinates

xa and x′a:

g̃′αβ − g̃′α5g̃
′
β5 = (g̃µν − g̃µ5g̃ν5)

∂x′µ

∂xα
∂x′ν

∂xβ

Under the assumption that the 5D transformation properties G5 are related to the normal

4D group G4 such that G5 = G4S1, with

x′µ = f(xµ); x′5 = x5 + g(xµ)

Then φ is independent of coordinate system:

g̃′55 = g̃55

If the metric is independent of x5, an assumption taken here, it is independent of x′5:

∂g̃ab
∂x5

= 0 =
∂g̃ab
∂x′5

∂x′5

∂x5
=
∂g̃ab
∂x′5
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The component of the metric we have identified with the potential 4-vector transforms like

a 4-vector to within the gradient of a scalar:

g̃′α5 = g̃55
∂f

∂xα
+ g̃µ5

∂x′µ

∂xα

This verifies that the elements of the 5D metric have transformation properties consistent

with our interpretation of them. Under purely 4D transformations, gµν , Aµ, and g̃55

transform as 4space tensor, vector, and scalar, respectively. Under x5 transformations,

gµν and g̃55 are unchanged, but Aµ gains the gradient of a scalar, a quantity which does

not affect the fields. This invites the interpretation of varying the vector potential by

the gradient of a scalar: it corresponds to a translation in x5. This would also provide a

physical interpretation of the Aharanov-Bohm effect.

5. Review of 4D Field Equations

The field equations for the metric gµν are formulated in terms of the curvature tensor:

Rαβγδ = ∂δΓ
α
βγ − ∂γΓαβδ + ΓρβγΓαρδ − ΓρβδΓ

α
γρ

successive contractions of which yield the Ricci tensor:

Rαβ ≡ Rγαγβ

and the curvature scalar:

R = gαβRαβ

Then the field equations for gµν are:

Rµν −
1

2
gµνR ≡ Gµν =

8πG

c4
Tµν

Where Tµν is a stress energy tensor, for which there is no real prescription for calculation.

As Einstein said, the terms in gµν are marble, while the other side of the equation wood.

The electromagnetic field equations are

∇µFµν =
4π

c
Jν

Fαβ ≡ ∂αAβ − ∂βAα
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where the divergence is covariant; antisymmetry of Fαβ allows covariant derivatives to

simplify to partial derivatives in its definition.

6. 5D Field Equations

A core assumption of the theory developed here is that no field variable depends on x5

∂g̃ab
∂x5

= 0 (21)

The invariance with respect to x5 is the cylinder condition. Wesson (1999) identifies terms

associated with the relaxation of the cylinder condition as matter source terms. This turns

the wood into marble, the pursuit of many scientists, Einstein included. Here, the cylinder

condition is adopted as an approximation motivated by empirics: we do not perceive

variations in x5, although charge is somehow associated with ‘motion’ in x5.

Here φ is allowed to vary with xµ, unlike some treatments of Kaluza theory, includingn

Kaluza’s. Jordan showed that having φ vary was required to avoid an unphysical constraint

on the electromagnetic field, a result which leads to an interesting interpretation below.

Allowing for a 5D stress-tensor T̃ab, the 5D field equations are

G̃ab ≡ R̃ab −
1

2
g̃abR̃ =

8πG

c4
T̃ab (35)

The 5D field equations have been shown by Thiry (1948) to be:

R̃µν = Rµν −
k2φ

2
FµαFβνg

αβ + φ−1/2∇µ∇νφ1/2 (31)

R̃µ5 =
kφ1/2

2
∇αFαµ +

3k

2
∂αφ1/2Fαµ (32)

R̃55 = φ−1/2∇µ∇µφ1/2 − k2φ

4
FαβF

αβ (33)

R̃ = R− 2φ−1/2∇µ∇µφ1/2 − k2φ

4
FαβF

αβ (34)

so that

G̃µν = Gµν +
k2φ

2
(gµνFαβF

αβ/4− FµαFνβgαβ)

− φ−1/2(∇µ∇νφ1/2 − gµν∇α∇αφ1/2) ≡ Gµν − 2πk2φTEMµν − Tφµν
(36)
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For G̃µ5 = G̃55 = 0, Thiry shows

∇µFµν = −3φ−1/2∂µφ1/2Fµν

gαβ∇α∇βφ1/2 =
k2φ3/2

4
FαβF

αβ (38)

These last are consistent with Wesson (1.27).

7. k from 4D Einstein-Maxwell Limit

Equation (38) shows that the electromagnetic field is a source for the scalar field. Likewise,

the scalar field is a source for the electromagnetic field. There are effective contributions

to the vacuum stress energy tensor from the scalar and electromagnetic fields.

The dependence of the φ on the electromagnetic field shows that variation of φ is necessary

to avoid constraining the EM field. As discussed by Bargmann (1957), various authors

interpreted the scalar field in in terms of a variable gravitational constant, thus making a

correspondence with Brans-Dicke theory.

To make contact with existing theory we must require correspondence between the vacuum

EM stress energy and the 4D result: 2πk2φ = 8πG/c4, implying:

k2φ =
4G

c4
=⇒ k2 ≡ 4G0

c4
; φ ≡ G

G0
(39)

where the scalar field φ has been interpreted in terms of the gravitational ‘constant’ as in

Brans & Dicke (1961), while recognizing that an alternative would be a varying c.

A variant of Brans-Dicke gravity is embedded in (36) and (38), with the electromagnetic

field as the source of φ. And unlike Brans-Dicke, the φ field impacts the equations of

motion.

It is not clear why variation in G should be preferred to variation in c. as both are seen

to be conversions from charge-space and time, respectively, into length.Perhaps the scalar

field should be seen as variation of the ratio G/c4.

8. G dependence on EM energy density at cosmological scales

Assuming that φ indeed describes the variable gravitational or speed of light constants,

(38) can be used to discern the lengthscale of the variation of φ.

Indeed, (38) implies that a lengthscale similar to the radius of the universe would charac-

terize variation in φ of order unity, using an electromagnetic energy density similar to the
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observed galactic value of 1 eV/cm3, and G and c similar to what is observed in the present

epoch. This variation is of interest only on cosmological scales, and not of interest for the

equations of motion of terrestrial objects. Therefore φ can be approximated as a constant

in the equations of motion, and the constraint is only on the cosmological electromagnetic

energy density.

The constancy of φ on terrestrial scales makes the identity exact in (16) between the 5D

connection and the 4D equations of motion. This is also one of Kaluza’s original simplifying

assumptions.

The theory developed below is built on the assumption of no variation in the metric with

respect to x5, and a weak assumption of constant φ.

Similarly, (38) implies a lengthscale for variations in G, which is given by

lk ∼ (k2eEM )−1/2 ∼ c2/(GeEM )1/2

Since eEM is quadratic in the field strength, a 1012 G magnetic field, typical for neutron

stars, would yield a characteristic lk of about 1 lightyear.

9. G as charge-to-mass ratio; size of kA

Consider the units of G: l3m−1t−2, while charge q ∼ m1/2l3/2t−1 and vector potential

A ∼ m1/2l1/2t−1. In this case, k2A2 is unitless, and is the dimensionless number that

expresses the strength of the coupling corrections to the 4-D theory, GA2/c4. According

to our conventions, g̃ab is unitless, with the coordinates of length units, thus φ is unitless.

It is a number of size yet to be determined. Under the assumption that φ is of order unity,

we can verify the magnitude of kA. This assumption is reasonable because we expect the

existence of a flat 5D space in whose limit φ→ 1.

The first thing that strikes one is the magnitude of the numbers involved. For a 106 G

magnetic field with characteristic length 1 km, A ∼ 1011, while k2 ∼ G/c4 ∼ 10−49, so

that in this case kA ∼ 10−38. Even the field for a pulsar, 1012 G with a 10 km lengthscale,

kA ∼ 10−31. For any terrestrial Aµ, kA � 1. The corrections to gµν are quite small

enough as to be unobservable.

Now estimate the magnitude of U 5 from (19).

U5 = c
q/m

2G
1/2
0

(40)
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The original requirement from the equations of motion implies that speed in the 5th

dimension is fixed by the particle charge-to-mass ratio. Assume that like rest mass, charge

is a rest-frame constant multiplying some scale factor which depends on motion. For

elementary particles, U 5/c � 1. For the electron, for example, U 5
e /c = 1021. G sets a

characteristic charge-to-mass ratio in this theory, and provides an interesting link between

gravity and electrodynamics.

10. 5D Stress Tensor

We can use (37) to normalize the 5D extensions to the 4D stress tensor:

T̃5µ ≡ ηJµ; η
8πG

c4
= kφ1/2 4π

c
=⇒ η = c/

√
G (41)

11. Energy-momentum-charge 5-vector: flat space

From (11) and (19), it is clear that electric charge is identified with motion in the 5th

dimension, as energy is associated with ‘motion’ in time, and momentum with motion in

space. The traditional energy-momentum 4-vector is seen to be the 4D projection of an

energy-momentum-charge 5-vector.

Ũa =
dxa

dτ̃
=
dτ

dτ̃

(
E

mc
,

p

m
,
q

mck

)
=
dt

dτ̃

(
c,v, sḣ

)
= c

dτ

dτ̃

(
γ, γβ,

q/m

2G1/2

)

We may speculate that electric charge q is identified with motion over time in x5. The

constant that converts charge to length units, as c does for time, is s = 1/ck, showing that

ultimately G is a conversion unit from x5 to time.

The invariant length of the 5velocity implies

γ̃2 =
b2

c2

(
1− β2 − (q/m)2

4G

)−1

12. Constants of Motion

The equations of motion (9) can be written in a simple and completely general form for

the covariant component of the 5-velocity Ũa = g̃abŨ
b. Because the metric commutes with

the covariant derivative, the equations of motion imply U a∇aU b = 0 = gbcU
a∇aU b =

Ua∇aUc. This and antisymmetry in the connections imply:

dŨa
dτ̃

=
1

2
Ũ bŨ c

∂g̃bc
∂xa

(23)
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This form of the equations of motion is in terms of a normal partial derivative instead of

a covariant derivative, and expresses the conservation properties of the metric. There is

a conserved quantity associated with each invariant coordinate. This is an expression of

Noether’s theorem: the invariance of the laws of physics in time/space/rotation manifest

as conservation of energy/momentum/angular momentum.

The cylinder condition (21) therefore implies a conserved quantity along 5D worldlines:

Ũ5 = kAνŨ
ν + φŨ5;

dŨ5

dτ̃
= 0 (25)

equivalent Wesson 5.20. Note that it is Ũ5 which is identified with electric charge in

the equations of motion (19), while (25) shows that Ũ5 alone is not conserved, implying

non-conservation of the parameter in the Lorentz force law we call charge.

Now consider the case of the 5D metric independent of time, for which there is the conserved

quantity:

Ũ0 ≡ g̃0aŨ
a = constant

= (g0µ + k2A0Aµ/φ)Ũµ + kA0Ũ
5

= g0µŨ
µ +

kŨ5

φ
A0

(29)

equivalent to Wesson 5.39. This generalizes the 4D energy by including the electrostatic

contribution.

The 5-momentum which is conserved when the metric is independent of spatial derivatives

j:

Ũj = gjµU
µ +

kŨ5

φ
Aj = constant (30)

This is the usual canonical momentum but with the distinction, as in the energy equation,

that the charge in the equations of motion is not the same as the effective conserved

charge-like quantities.

13. Equations of motion on non-cosmological scales

If variations in φ are ignored, then a relatively local regime of lengthscale variation is

assumed, which may be called non-cosmological. On such scales, terms in the the gradient

of φ are ignored and φ is taken to be constant.

We are now in a position to consider the equations of motion (12) and (13). For the

4-velocity equation (12), there are 3 connections of interest in the limit of constant φ
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Γ̃µ55 = Γ̃5
55 = 0 = Γ̃a55

Γ̃µ5α =
k

2
gµνFαν

Γ̃µαβ = Γµαβ +
2G

c4
gµνHαβν ; Hαβν ≡ AαFβν +AβFαν

There is no contribution from the term in U 5. The 5D connection for the cross term

reduces to the usual Lorentz formula. However, there is a modification to the equations

of motion. We see an apparent antigravity term of electromagnetic origin that could in

principle nullify the standard Einstein term.

The constants of motion provide a more direct approach to the equation for U 5 than the

connections above. As shown below, dτ/dτ̃ varies with φ, so this quantity is approximately

constant, and

kAνU
ν + U5 =

G

c3
mAνU

ν + q = constant

14. Line Element; dτ/dτ̃

With this constant of the motion in hand, consider the 5D line element

b2dτ̃2 ≡ g̃abdxadxb = (gµν + k2AµAν/φ)dxµdxν + 2kAµdx
µdx5 + φ(dx5)2

= c2dτ2 + (φ−1/2Ũ5dτ̃)2
(27)

This provides a relationship between the 4D and 5D line elements

(
dτ

dτ̃

)2

=
b2

c2
− Ũ2

5

φc2
(28)

equivalent to Wesson 5.22, and which apparently has a singularity. The invariant length

of the the τ -referenced 5-velocity is

g̃abU
aU b = c2 +

(
dτ̃

dτ

)2
Ũ2

5

φ

15. Motion at Constant Time

For motion at constant time, the momentum 5-vector (?) should be cast in terms of the

derivative with respect to h. Then

Ũa =
dh

dτ̃

(
c
dt

dh
,
dx

dh
, s

)
=
dh

dτ̃

(
0,
dx

dh
, s

)
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The interval at constant time is

b2dτ̃2 = g̃abdx
adxb = −dx2 + eiθs2dh2

so that (
dh

dτ̃

)2

=
b2

eiθs2 − (dx/dh)2

Also use T̃ab = mŨaŨ b.
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16. Appendix A: Algebraic Relations

The following useful relations are from Weinberg.

Since the scalar curvature is related to the trace of the stress energy tensor

R =
8πG

c4
gαβTαβ

the field equations can be rewritten to show vacuum equations purely in terms of the Ricci

tensor:

Rµν =
8πG

c4

(
Tµν −

1

2
gµνTαβg

αβ

)

The contraction of the curvature tensor with the metric, gανR
ν
βγδ = Rαβγδ, has the prop-

erties of being symmetric in its pairs of indices

Rαβγδ = Rγδαβ

antisymmetric to permutations of a pair

Rαβγδ = −Rβαγδ = −Rαβδγ

and cyclic in the last three indices

Rαβγδ +Rαδβγ +Rαγδβ = 0

Some useful algebraic results:

∂λgµν = gρνΓρλµ + gµρΓ
ρ
λν

Rλµνα =
1

2
[∂α∂µgλν − ∂α∂λgµν − ∂ν∂µgλα + ∂ν∂λgµα] + gησ[ΓηνλΓσµα − ΓηαλΓσµν ]

R = gλνgµαRλµνα

Rαβ = gλνRλανβ

Γµµν =
1√
g
∂ν
√
g
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17. Appendix B: Stress Energy Tensor Forms

Electromagnetic stresses are, however, a source of curvature. An (they are not unique)

electromagnetic stress-energy tensor is:

TαβEM =
1

4π
(gαµFµλF

λβ +
1

4
gαβFµλF

µλ)

So

T 00
EM =

1

8π
(E2 +B2) T oiEM =

1

4π
εijkE

jBk

T ijEM = − 1

4π

[
EiEj +BiBj − 1

2
δij(E

2 +B2)

]

A useful material stress-energy tensor is that for a fluid:

Tµν = Pgµν + (P + ρc2)
UµUν

c2

Or for a collection of non-interacting particles:

Tµν = ρUµUν
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18. Appendix C: 5D Connections

The 5D connections:

Γ̃5
55 =

1

2
kAµ∂µ lnφ = −Γ̃α5α =⇒ Γ̃a5a = 0

Γ̃5
5µ =

1

2
(1 + k2A2/φ)∂µ lnφ− k2

2φ
AνFµν

Γ̃µ55 = −1

2
gµν∂νφ

Γ̃µ5ν =
1

2
kgµσFνσ −

1

2
kAµ∂ν lnφ

Γ̃µαβ = Γµαβ +
k2

2φ
gµν(AαFβν +AβFαν) +

k2

2φ
gµν(Aβν∂α lnφ+Aαν∂β lnφ−Aαβ∂ν lnφ)

so that

Γ̃aaβ = Γααβ +

[
1

2
+
k2A2

2φ
+
k2A2

2φ2

]
∂β lnφ

Γ̃5
αβ =

k

2φ
(Hαβ − 2AσΓσαβ)− k3

2φ2
HαβνA

ν

where

Aαβ ≡
AαAβ
φ

Hαβν ≡ AαFβν +AβFαν

Some traces:

Γ̃ααβ = Γααβ +
k2

2φ
AαFβα

Γ̃αα5 = 0

A couple useful combinations:

Γ̃5
αβ +

kAµ
φ

Γ̃µαβ =
k

2φ
Hαβ

Γ̃5
µ5 +

kAα
φ

Γ̃α5µ = 0
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